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Abstract  34 

The Northeastern United States has experienced a large increase in precipitation over recent 35 

decades. Annual and seasonal changes of total and extreme precipitation from station 36 

observations in the Northeast are assessed over multiple time periods spanning 1901–2014. 37 

Spatially averaged, both annual total and extreme precipitation across the Northeast have 38 

increased significantly since 1901, with changepoints occurring in 2002 and 1996, respectively. 39 

Annual extreme precipitation has experienced a larger increase than total precipitation; extreme 40 

precipitation from 1996–2014 was 53% higher than from 1901–1995. Spatially, coastal areas 41 

received more total and extreme precipitation on average, but increases across the changepoints 42 

are distributed fairly uniformly across the domain. Increases in annual total precipitation across 43 

the 2002 changepoint have been driven by significant total precipitation increases in fall and 44 

summer, while increases in annual extreme precipitation across the 1996 changepoint have been 45 

driven by significant extreme precipitation increases in fall and spring. The ability of gridded 46 

observed and reanalysis precipitation data to reproduce station observations was also evaluated. 47 

Gridded observations perform well in reproducing averages and trends of annual and seasonal 48 

total precipitation, but extreme precipitation trends show significantly different spatial and 49 

domain-averaged trends than station data. North American Regional Reanalysis generally 50 

underestimates annual and seasonal total and extreme precipitation means and trends relative to 51 

station observations, and also shows substantial differences in the spatial pattern of total and 52 

extreme precipitation trends within the Northeast. 53 

 54 

1 Introduction  55 
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Multiple studies have found increasing total and extreme precipitation across the Northeastern 56 

United States (Kunkel et al. 2013a; Peterson et al. 2013; Hayhoe et al. 2007), and extreme 57 

precipitation events have increased faster over the Northeast region than in any other part of the 58 

United States (Kunkel et al. 2013a). Hayhoe et al. (2007) found an increase of 10 mm decade-1 in 59 

annual total precipitation from 1900 to 1999 using the 93 stations in the U.S. Historical 60 

Climatology Network in the states of Maine, New Hampshire, Vermont, Massachusetts, Rhode 61 

Island, Connecticut, New York, New Jersey, and Pennsylvania. Using the U.S. Climate 62 

Divisional Dataset Version 2 over the domain of Hayhoe et al. (2007) plus Maryland, Delaware, 63 

West Virginia, and Washington D.C., Kunkel et al. (2013b) found a 10.2 mm decade-1 increase 64 

in annual total precipitation over 1895–2011. However, across a similar time period (1901–2000) 65 

as Hayhoe et al. (2007), Walsh et al. (2014) and Kunkel et al. (2013b) found a trend of 66 

approximately 5.6 mm decade -1. 67 

 68 

Extreme precipitation events have also been increasing across the Northeast, both in intensity 69 

and frequency, particularly over the past three decades (Walsh et al. 2014; Kunkel et al. 2013a; 70 

Hoerling et al. 2016). This increase in extreme precipitation events is consistent with expected 71 

impacts of climate change on precipitation, primarily more extreme events driven by the ability 72 

of the atmosphere to hold more water as described by the Clauisus-Clapeyron relationship (e.g., 73 

Trenberth 1998; Mishra et al. 2012; Prein et al. 2017). Kunkel et al. (2013a) found significant 74 

increases in both 1-in-5-year 2-day precipitation events and the amount of precipitation falling 75 

on the 1% wettest days during the time period 1957–2010 for the Northeast. Hoerling et al. 76 

(2016) discovered a 2–3% increase per decade in both the total amount and frequency of heavy 77 

precipitation events (5% wettest days) in the Northeast over 1901–2013, with the increases in 78 
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heavy precipitation total amount, frequency, and intensity accelerating after 1979. Walsh et al. 79 

(2014) also evaluated trends in the amount of precipitation falling in the Northeast on the 1% 80 

wettest days using the Global Historical Climatology Network-Daily dataset, finding a striking 81 

increase of 71% from 1958 to 2012. 82 

 83 

Given the growing consensus on the recent dramatic increase of extreme precipitation across the 84 

Northeast, our motivation is to explore the temporal and spatial attributes of precipitation 85 

increases in greater detail, as well as assess the ability of gridded observational and reanalysis 86 

datasets to capture this precipitation increase. Specifically, we add to this literature by: 1. 87 

assessing the sensitivity of total and extreme precipitation changes to the time period of analysis 88 

(Sections 3.1.1, 3.1.3), 2. exploring the spatial distribution of total and extreme precipitation 89 

across the Northeast (Sections 3.1.2, 3.1.4), 3. analyzing seasonal contributions to changes in 90 

annual total and extreme precipitation (Sections 3.1.5), and 4. evaluating the consistency of 91 

means and trends in precipitation across station, gridded, and reanalysis data (Section 3.2). 92 

 93 

2 Data and Methods 94 

We define the Northeast as Maine, New Hampshire, Vermont, Massachusetts, Connecticut, 95 

Rhode Island, New Jersey, New York, Pennsylvania, Maryland, Washington D.C., Delaware, 96 

and West Virginia. This domain was selected for consistency with Walsh et al. (2014). This 97 

study focuses on precipitation changes recorded by station observations since 1901, which are 98 

variable in length by station, as well as gridded and reanalysis data spanning 1915–2011 and 99 

1979–2014, respectively. We therefore conduct our analyses for three time periods: 1901–2014, 100 

1915–2011, 1979–2014. To facilitate intercomparisons among the three datasets, an additional 101 
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period, 1979–2011, is also analyzed. Each of the three datasets used – station observations, 102 

gridded observations, and reanalysis – as well as the metrics and processes used to analyze them, 103 

are described below.  104 

 105 

2.1 Climate Data 106 

Station observations were derived from the Global Historical Climatology Network-Daily 107 

(GHCN-D) dataset (Menne et al. 2012a, b), which is produced and archived by the National 108 

Oceanic and Atmospheric Association (NOAA) National Climatic Data Center. GHCN-D has 109 

been used extensively in climate analysis and monitoring studies that require daily data, such as 110 

assessments of heavy rainfall events, heat waves and cold snaps, and is the official archive for 111 

US daily data (Menne et al. 2012b; Peterson et al. 2013). It consists of over 96,000 stations 112 

worldwide that capture all or a subset of: daily maximum and minimum temperature, 113 

precipitation, snowfall, and snow depth. The time period of record varies by station from less 114 

than one year to 177 years, with the average precipitation record spanning 33.1 years (Menne et 115 

al. 2012b).  116 

 117 

Because the temporal coverage of GHCN-D varies, we first extracted all 5,867 stations for the 118 

Northeast domain as defined above and then selected stations based on an 80% completeness 119 

threshold (Alexander et al. 2006; Xie et al. 2007; Higgins et al. 2007). We first require that each 120 

year be at least 80% complete and treated years with less than 80% complete records as missing 121 

values in order to minimize the potential influence of years with seasonal gaps. Then, we 122 

selected stations with daily records at least 80% complete in one or two periods (1901–2014: 123 
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80% complete overall and 80% complete from 1979–2014; 1915–2011: 80% complete from 124 

1915–2011 and 80% complete from 1979–2011; 1979–2014: 80% complete from 1979–2014; 125 

1979–2011: 80% complete from 1979–2011). Applying these standards yields 116 qualifying 126 

stations for the 1901–2014 period, 176 stations for the 1915–2011 period, 558 stations for the 127 

1979–2011 period, and 525 stations for the 1979–2014 period. To calculate annual total 128 

precipitation, daily precipitation amounts were averaged and then multiplied by the total days of 129 

each year. 130 

 131 

Gridded observations were developed by Livneh et al. (2013), hereafter LI2013, for the 132 

contiguous United States based on the methods of Maurer et al. (2002). Maurer et al. (2002) has 133 

been widely used in water and energy budget studies as well as climate change assessments 134 

(Wood et al. 2004; Hayhoe et al. 2004; Westerling et al. 2006; Elsner et al. 2014). LI2013 uses 135 

daily temperature and precipitation observations from approximately 20,000 NOAA Cooperative 136 

Observer (COOP) stations gridded to a spatial resolution of 1/16° latitude/longitude (~7 km). 137 

Available daily meteorological data include station-based temperature and precipitation, as well 138 

as wind from reanalysis covering the time period 1915–2011 (Livneh et al. 2013). Additional 139 

details of LI2013 can be found in Livneh et al. (2013) and Maurer et al. (2002). 140 

 141 

Reanalysis data are from the National Centers for Environmental Prediction (NCEP) North 142 

American Regional Reanalysis (NARR; Mesinger et al. 2006). NARR combines NCEP’s Eta 143 

atmospheric model and Regional Data Assimilation System to produce a dynamically consistent 144 

atmospheric and land surface hydrology dataset for North America (Mesinger et al. 2006). 145 

Compared to other reanalysis products, NARR is high resolution (~32 km) and notably 146 
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incorporates precipitation, a variable not typically assimilated (Mesinger et al. 2006). Further, 147 

NARR uses an updated version of the NOAA land surface model and an expanded and improved 148 

set of observations for data assimilation (Mesinger et al. 2006). NARR has been shown to have 149 

significantly improved performance relative to NCEP-Department of Energy Reanalysis 2 150 

(Mesinger et al. 2006). NARR is available at 3-hour, daily and monthly temporal resolutions for 151 

1979 to near present; we use daily means from 1979–2014. To make NARR directly comparable 152 

to gridded observations, we interpolated its native Lambert Conformal Conic grid to 1/16° 153 

regular latitude using the nearest neighbor approach of MATLAB’s griddata function. 154 

 155 

2.2 Methods 156 

Using the three datasets described above, we assess annual and seasonal changes in total and 157 

extreme precipitation over the Northeast spanning multiple time periods, both spatially averaged 158 

and at the station/grid scale. Time periods are selected to maximize overlap across datasets and 159 

for consistency with Walsh et al. (2014). Analyses were conducted for each dataset – GHCN-D, 160 

NARR, and LI2013 – individually, and then the consistency of changes across datasets was 161 

evaluated.  162 

 163 

Stations with long-term records are distributed unevenly in the Northeast with a higher station 164 

density near major and largely near-coastal metropolitan areas and a lower density in 165 

mountainous regions. To properly represent the regional values from station observations, we 166 

applied area averaging to calculate regional precipitation means (Groisman et al. 2004) instead of 167 

simply averaging over all stations. Area averaging is conducted by arithmetically averaging 168 

annual or seasonal precipitation values in all stations within 1°×1° grid cells and then regionally 169 
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averaging the gridded values (Groisman et al. 2004; Walsh et al. 2014). Grid cells without any 170 

selected GHCN-D stations are treated as missing values, and therefore do not get incorporated in 171 

the regional means.  172 

 173 

We calculate annual total precipitation by calendar year for all three daily datasets over the 174 

length of record, as well as for a few select time periods described in Section 2.1 to enable 175 

comparisons across datasets. Then, for each data point within the domain (station for station 176 

observations, grid cell for gridded observations and NARR), we calculate a linear regression 177 

from the annually averaged values, yielding an annual trend for all relevant time periods. Simple 178 

linear regression is used as the standard parametric trend analysis method with a significance test 179 

(Student’s t-test) at p < 0.05. To make the trends in precipitation (absolute changes, expressed in 180 

mm decade-1) more comparable among various periods, we also compute relative percent 181 

changes (expressed in % decade-1) by subtracting the first point on the linear regression from the 182 

last point on the regression, and then dividing by the modeled value at the first point: 183 

                                                           ∆=
10∗𝑆

𝑃𝑖
∗ 100%                                               (1) 184 

where ∆ is the relative change in precipitation (% decade-1), S is the slope of the linear model 185 

(mm yr-1), and 𝑃𝑖 is the modeled precipitation value in start year i (mm). In addition to assessing 186 

linear trends in total precipitation with Student’s t-test, we also conducted a rank-based Mann-187 

Kendall significance test for annual total precipitation. 188 

 189 
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In the seasonal precipitation analyses, daily records were grouped into four seasons: spring 190 

(March, April, May), summer (June, July, August), fall (September, October, November), and 191 

winter (December, January, February). For station observations, seasonal total precipitation in 192 

each year was calculated by multiplying the daily average in a season by the total days of the 193 

season, consistent with the calculation of annual total precipitation. Because the selected stations 194 

are constrained by the 80% complete requirement in both total daily records and annual records, 195 

seasonal records were usually at least 60% complete (higher than 80% complete in most 196 

seasons). For gridded and reanalysis data, seasonal total precipitation is the sum of daily 197 

precipitation amounts in a season because both datasets provide complete daily values. The 198 

winter seasonal time series contains one less value than other seasonal series because January 199 

and February in both 2012 and 2015 fall outside the analysis periods ending in 2011 and 2014, 200 

respectively. Seasonal trends and changes in total precipitation were calculated with the same 201 

methods as annual total precipitation. 202 

 203 

We define extreme precipitation as the amount of precipitation falling on the 1% of wet days 204 

recording the most precipitation. Specifically, for each station (for GHCN-D) or grid cell (for 205 

LI2013 and NARR), we first determined the 99th percentile threshold of daily precipitation 206 

events over each of the four periods of record (1901–2014, 1915–2011, 1979–2014, and 1979–207 

2011). Then, for each station or grid point, we summed the total precipitation falling on days 208 

exceeding the 99th percentile threshold for each year. These annual values were then averaged by 209 

area for stations (or by grid cells for gridded observations and reanalysis) to determine the 210 

Northeast regional annual values of extreme precipitation. This procedure is consistent with 211 

Walsh et al. (2014). We repeated this process by season to calculate seasonal extreme 212 
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precipitation values using 32 thresholds in total for the three datasets, four periods, and four 213 

seasons. It is important to note that we calculate different 99th percentile extreme precipitation 214 

thresholds for each season. For example, the average Northeast thresholds are 38.9 mm in winter 215 

vs. 55.1 mm in summer from 1901–2014 in the GHCN-D dataset. Thus, the seasonal extreme 216 

precipitation means may appear to suggest relatively equal amounts of extreme precipitation in 217 

each season, whereas at least 75% of the 99th percentile events in the Northeast occur in summer 218 

and fall when using a single extreme threshold for the whole year (Frei et al. 2015). Thus, 219 

applying the same threshold to each season would result in small or negligible amounts of winter 220 

and spring extreme precipitation, making comparisons of gridded and reanalysis precipitation to 221 

station observations very difficult. 222 

 223 

Trends in annual and seasonal extreme precipitation were assessed using a non-parametric, 224 

Theil-Sen robust linear regression (Theil 1950; Sen 1968). Compared to the parametric trend 225 

analysis, i.e. simple linear regression used for total precipitation, the advantages of Theil-Sen 226 

estimation is its insensitivity to outliers, making it more accurate than simple linear regression 227 

for skewed and heteroskedastic data with multiple extreme values (Alexander et al. 2006; Kunkel 228 

et al. 2010). The significance of monotonic trends (p < 0.05) from Theil-Sen estimation is 229 

evaluated using the Mann-Kendall test (Mann 1945; Kendall 1970). After computing the trends 230 

of absolute changes (mm decade-1), relative changes in extreme precipitation (% decade-1) are 231 

also calculated with equation (1). 232 

 233 

http://www.mathworks.com/matlabcentral/fileexchange/45624-robust-linear-regression
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We note that in Section 3.1 and Tables 1–4 we use the 116 GHCN-D stations with 80% complete 234 

records from 1901–2014 and a single threshold for each station 1901–2014 to determine the 1% 235 

extreme precipitation events, which allows us to compare total and extreme precipitation 236 

amounts across four time periods. However, we use all GHCN-D stations with 80% complete 237 

records (525 stations 1979–2014, 558 stations 1979–2011, 176 stations 1915–2011) for 238 

comparison to NARR and LI2013 in Section 3.2 and Tables 5–8. 239 

 240 

3 Results and Discussion 241 

We first explore the changes in total and extreme precipitation over the length of record using 242 

station observations. Specifically, we analyze annual total and extreme precipitation and their 243 

trends (in both absolute and relative changes) across various time periods, and evaluate their 244 

spatial distributions. Seasonal total and extreme precipitation are then assessed in a similar way. 245 

Finally, we evaluate total and extreme precipitation and their seasonality in gridded observations 246 

and reanalysis data, and compare them to the station observations.  247 

 248 

3.1 Total and extreme precipitation in station observations 249 

3.1.1 Spatially averaged changes in Northeast total precipitation 250 

GHCN-D annual total precipitation averaged over the Northeast region increased significantly (p 251 

< 0.05) across all four time periods analyzed using linear regression with a Student’s t-test and 252 

for 1979–2011 and 1979–2014 using the Mann-Kendall test (Table 1). The annual total 253 

precipitation over both 1979–2014 (1104 mm) and 1979–2011 (1104 mm) was 4.4% higher than 254 

the 1901–2014 average (1063 mm). Further, these two recent periods show much larger 255 
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increasing trends of 40.8 mm decade-1 (4.0% decade-1) and 52.8 mm decade-1 (5.2% decade-1), 256 

respectively, compared to trends over 1901–2014 (6.0 mm decade-1) and 1915–2011 (11.1 mm 257 

decade-1) (Table 1). In fact, linear trends ending in 2014 consistently increase in slope as the start 258 

date progressively moves through the 20th century (Figure 1a), confirming that linear trends in 259 

annual total precipitation in the Northeast are highly sensitive to both the start and end dates as 260 

noted in other precipitation analyses (Frei et al. 2015; Frei and Schär 2001; Wu et al. 2005). 261 

 262 

Interestingly, when starting from 1901, the linear trend does not become significant until 2014, 263 

and the trend from 1901–2001 is -1.6 mm decade-1. Kunkel et al. (2013b) note a significant 264 

increase in total Northeast precipitation from 1901–2011, but an analysis of their data shows that 265 

there is no significant trend from 1901–2001, similar to our findings. We conclude that the shift 266 

to a wetter climate in 2002 (Figure 1b) is responsible for the significant linear trends in annual 267 

total precipitation from 1901–2014 and the progressively larger trends in recent decades (Figure 268 

1a).  269 

 270 

A changepoint analysis using the findchangepts function in MATLAB (Killick et al. 2012) 271 

identifies the abrupt shift to a wetter period in 2002 (Figure 1b). Every annual total from 2002 to 272 

2014 was above the 1901–2014 average (1063 mm), which never occurred in any previous 13-yr 273 

period. Total precipitation increased by 13% across this changepoint, with a mean from 1901–274 

2001 of 1048 mm and from 2002–2014 of 1183 mm. There are insignificant decreasing trends 275 

both before the 2002 shift (-1.6 mm decade-1 from 1901–2001) and after (-62.9 mm decade-1 276 

from 2002–2014), indicating that a changepoint analysis is preferable to a linear trend analysis to 277 

characterize the change in total precipitation from 1901–2014. Future analyses will focus on 278 
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identifying the dynamical changes underlying this abrupt increase in Northeast precipitation 279 

around 2001–2002. 280 

 281 

We attribute differences between the trends calculated in Kunkel et al. (2013b), Hayhoe et al. 282 

(2007), and this work to differences in datasets analyzed, spatial domain, data processing and 283 

quality control procedures (e.g. filling missing daily data and the spatial gridding method), and 284 

bias correction due to historical changes in instrumentation and observing practices (Legates and 285 

DeLiberty 1993; Vose et al. 2014; Menne et al. 2012a, b; Easterling et al. 1996).  286 

 287 

3.1.2 Spatial changes in Northeast total precipitation 288 

Shifting our focus to the spatial patterns of precipitation rates and trends over the Northeast 289 

(Figure 2), we find the expected coast-interior gradient with coastal areas generally receiving 290 

more annual total precipitation, although some mountainous stations in northern West Virginia 291 

and central New York also received very high precipitation (>1200 mm yr-1) due to orographic 292 

effects (Kunkel et al. 2013b). Despite the substantial coast-interior gradient in total precipitation 293 

amount, total precipitation trends from 1901–2014 and 1915–2011 were generally consistently 294 

positive across the whole Northeast domain, with the exception of decreases or no significant 295 

trends in parts of West Virginia, eastern Maryland and Delaware (Figure 2b, 2c). Fifty-five of the 296 

116 stations (47%) had statistically significant positive trends from 1901–2014, whereas only 17 297 

stations (15%) from 1901–2014 had negative annual total precipitation trends, and only three of 298 

these (all in West Virginia) were statistically significant (Figure 2b). Similarly, 49% and 2% of 299 

stations experienced significant increasing and decreasing trends from 1915–2011, respectively. 300 

Relative to the longer-term period of 1901–2014, the 1979–2014 interval features a higher 301 



14 

 

proportion (90%) of stations with positive trends, with only 10% of the stations showing 302 

negative trends (Figure 2d). However, only 26% of the stations show positive trends that are 303 

statistically significant, although they are distributed relatively uniformly across the Northeast 304 

domain similar to the 1901–2014 trend pattern. 305 

  306 

3.1.3 Spatially averaged changes in Northeast extreme precipitation 307 

Recent increases in extreme precipitation over the Northeast are significantly larger than the 308 

increases in annual total precipitation described above. Annual extreme precipitation averaged 309 

82.4 mm yr-1 from 1901–2014, and increased significantly by 2.4 mm decade-1 (3.6% decade-1) 310 

over this interval (Table 2). The positive trends in extreme precipitation ending in 2014 311 

progressively increase with later start years (Figure 3a), in parallel with the total precipitation 312 

trends. These large trends in extreme precipitation are dominated by high annual extremes since 313 

1996 (Figure 3), with the four highest extreme precipitation years in 2011 (182.8 mm), 1996 314 

(177.3 mm), 2005 (177.2 mm), and 2010 (157.9 mm). From 1996 to 2014, all but two annual 315 

extremes (1997 and 2001) are above the 1901–2014 average (Figure 3b). Similar to annual total 316 

precipitation, there is no significant trend in extreme precipitation from 1901–1995. Thus, long-317 

term trends in extreme precipitation are likewise very sensitive to the length of records, start 318 

year, and end year.  319 

 320 

As with total precipitation changes, changes in extreme precipitation from 1901–2014 are not 321 

well characterized by a linear trend. The changepoint algorithm identifies the 1996 jump to 322 

higher extreme precipitation that is apparent visually in the time series (Figure 3b). Averaged 323 
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over the Northeast, extreme precipitation from 1996–2014 was 53% higher than from 1901–324 

1995. Interestingly, there is no significant trend within the wetter 1996–2014 interval, although 325 

the 19-year length is too short to assess trends with confidence. 326 

 327 

Walsh et al. (2014) reported a striking extreme precipitation increase in the Northeast of 71% 328 

from 1958 to 2012, which exceeds all other regions in the continental U.S. Following the same 329 

calculation procedures as Walsh et al. (2014), we find a comparable increase (69%) in extreme 330 

precipitation relative to the 1958–2012 average. However, extreme precipitation increased only 331 

by 8.4% over the period 1958–1995, and the trend is insignificant. Therefore, we argue that the 332 

53% increase in average extreme precipitation after the 1996 changepoint is more representative 333 

of the increase in Northeast extreme precipitation. 334 

 335 

3.1.4 Spatial changes in extreme precipitation 336 

Figure 4a shows that, as expected, coastal areas generally received more extreme precipitation 337 

than inland areas from 1901 to 2014, which mirrors the spatial pattern in annual total 338 

precipitation. Also as in annual total precipitation, there is a pocket of elevated extreme 339 

precipitation driven by topography in northern West Virginia.  340 

 341 

In terms of spatial patterns in the extreme precipitation trends, annual extreme precipitation 342 

increased in 58 (50%) of the 116 stations from 1901 to 2014 (Figure 4b), 30 (25%) of which 343 

were statistically significant. The stations with positive extreme precipitation trends are 344 

distributed fairly uniformly throughout the study area (Figure 4b). Only five (4.3%) stations had 345 
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negative trends, two of which were significant. The remaining 53 stations (45.7%) had an 346 

undetectable trend because more than half of the annual values for those stations were zero, and 347 

the Theil-Sen estimator calculates the median slope of all possible lines between any two paired 348 

points (Theil 1950; Sen 1968). This large proportion of zeroes in the station extreme 349 

precipitation time series is a result of heavy precipitation events occurring over limited time 350 

period relative to the length of record, which limits our ability to assess trend significance by 351 

station. However, this limitation does not affect the trend values themselves or the detection of 352 

spatially averaged trends as described in Section 3.1.3.  353 

 354 

The more recent period of 1979–2014 contains a higher proportion of stations with positive 355 

trends (315 out of 525 stations, or 60%), 79 (15%) of which are statistically significant (Figure 356 

4d). Once again, the stations showing positive trends are distributed throughout the study area, 357 

with the exception of western New York State and Pennsylvania (Figure 4d) where several of the 358 

40 stations (7.6%) with decreasing trends are located. Only 3 stations (0.6%) have statistically 359 

significant decreases in extreme precipitation: Bradford Regional Airport, Pennsylvania (41.80° 360 

N, 78.64° W), Erie International Airport, Pennsylvania (42.08° N, 80.18° W), and Ashfield, 361 

Massachusetts (42.51° N, 72.85° W). Bradford and Ashfield are two of the three stations that 362 

have a significant decrease in annual total precipitation as well. Bradford Regional Airport and 363 

Erie International Airport are both located just east of Lake Erie in a local area with multiple 364 

stations reporting decreases in extreme precipitation, while Ashfield is anomalous based on 365 

surrounding stations. 366 

 367 



17 

 

Figure 5 shows the percent difference in extreme precipitation between the wetter 1996–2014 368 

period compared to 1901–1995, representing the change across the 1996 changepoint. 105 of the 369 

116 stations (91%) show higher extreme precipitation after 1996, and 56 stations exceed a 50% 370 

increase and are fairly uniformly distributed across the Northeast (Figure 5). Regions with 371 

multiple stations showing an extreme precipitation decrease across this changepoint include east 372 

of Lake Erie (western New York and Pennsylvania) and northeast West Virginia. Thus, these 373 

regions consistently show declining recent trends in total (Figure 2d) and extreme precipitation 374 

(Figures 4d and 5).  375 

 376 

3.1.5 Changes in seasonal precipitation 377 

Total precipitation increases in spring, summer, and fall over all four time periods of analysis 378 

(Table 3), with larger trends since 1979, consistent with the record of increasing annual total 379 

precipitation (Table 1). Over the full time period (1901–2014), only the trend in fall precipitation 380 

(4.8 mm decade-1) is significant, while the summer trend (18.3 mm decade-1) is significant over 381 

1979–2014 (Table 3). These findings are consistent with Kunkel et al. (2013b), who reported fall 382 

as the only season that experienced a significant increase in total precipitation 1895–2011, Frei et 383 

al. (2015), who found that precipitation during the warm season (June–October) increased after 384 

2002, and Marquardt Collow et al. (2016), who noted a significant increase in mean summer 385 

(June, July, August) precipitation over the period 1979–2014. Fall and summer precipitation 386 

experience changepoints in 2002 and 2003, respectively, suggesting that these two seasons are 387 

important drivers of the annual total precipitation changepoint in 2002. Winter precipitation, in 388 

contrast, shows a distinctly different pattern: a decreasing trend (-1.8 mm decade-1) from 1901–389 

2014, a near-zero trend (0.6 mm decade-1) from 1915–2011, and large, statistically significant 390 
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trends (18.1–21.8 mm decade-1) since 1979. However, the large trends since 1979 are strongly 391 

influenced by the winter 1979 value, which is the lowest in the entire record. Extending the 392 

period back just two additional years to 1977 (e.g. 1977–2014) results in lower winter trends by a 393 

factor of 2–3 that are statistically insignificant (not shown), providing further evidence of the 394 

sensitivity of trend analysis to time period analyzed. 395 

 396 

Extreme precipitation increases across all seasons over all time periods, with the largest 397 

percentage increases in spring and winter. These increases are statistically significant for winter 398 

(all periods) and for spring over the long periods (1901–2014 and 1915–2011), as shown in 399 

Table 4. Trends are particularly large over 1979–2014 across all seasons, and seasonal 400 

contributions to the abrupt annual extreme precipitation shift in 1996 are dominated by increases 401 

in spring and fall extreme precipitation, which are 83% and 85% higher from 1996–2014 than 402 

from 1901–1995, respectively. Winter and summer extreme precipitation are 45% and 27% 403 

higher, respectively, after the 1996 shift (not shown). In addition, fall extreme precipitation 404 

contains a changepoint in 1995, one year before the annual extreme precipitation changepoint. 405 

The spring extreme precipitation changepoint occurred in 2005, but it moves to 1998 if 2003, 406 

one of the 10 lowest extreme springs on record, is removed. Thus, both fall and spring show a 407 

significant and abrupt increase in extreme precipitation in the mid-late 1990’s that contributed to 408 

the annual extreme changepoint in 1996. The similar timing of the fall and spring change to 409 

wetter extreme conditions suggests that they may be driven by common dynamical changes.  410 

 411 

3.2 Comparison of gridded and reanalysis precipitation to station observations 412 
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3.2.1 Spatially averaged Northeast total precipitation 413 

Overall the gridded LI2013 dataset reproduces observed station total precipitation and its trends 414 

well. The annual total precipitation during 1915–2011 and 1979–2011 in LI2013 are 1088 and 415 

1143 mm, respectively, compared to 1071 and 1110 mm for the same periods in GHCN-D 416 

(Table 5). The 1979–2011 annual precipitation trend in LI2013 (54.2 mm decade-1) is slightly 417 

lower than the trend in GHCN-D (56.8 mm decade-1), while the trend during 1915–2011 (12.4 418 

mm decade-1) is slightly higher than the GHCN-D trend (10.7 mm decade-1). Additionally, 419 

consistent with GHCN-D, trends in LI2013 significantly increase from 1915–2011 using linear 420 

regression with a Student’s t-test and from 1979–2011 using linear regression with a Student’s t-421 

test and the Mann-Kendall test. The changepoint algorithm identifies a significant shift to wetter 422 

conditions in the LI2013 dataset in 2003, only one year later than the changepoint in the GHCN-423 

D data. Figure 6a shows that LI2013 also closely reproduces the spatial distribution of annual 424 

total precipitation observed at GHCN-D stations from 1915–2011. LI2013 also reasonably 425 

captures GHCN-D total precipitation trends, although there are differences, such as LI2013 426 

containing a drying trend in western Maine compared to a significant wetting trend in GHCN-D 427 

(Figure 6b). 428 

 429 

NARR annual total precipitation for 1979–2014 is 1041 mm, compared to 1111 mm in GHCN-D 430 

for the same period. With an underestimation of 6.3%, this difference is larger than that found 431 

between LI2013 and GHCN-D. In contrast to significant trends in GHCN-D, trends in NARR 432 

annual precipitation are insignificant in both periods analyzed (1979–2014 and 1979–2011), and 433 

are a remarkable 2–9 times lower than the GHCN-D trends (Table 5). Furthermore, the 434 

changepoint analysis identifies no significant changepoints in the NARR annual total 435 
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precipitation time series. Spatially, Figure 6c shows that while NARR generally captures the 436 

lower annual precipitation values at inland GHCN-D stations, NARR tends to underestimate 437 

annual precipitation at other GHCN-D stations. More notable, however, is that NARR has 438 

decreasing total precipitation trends in many areas over the period 1979–2014, particularly along 439 

the coast and in western Pennsylvania, New York, and West Virginia (Figure 6d). In contrast, 440 

GHCN-D has positive trends consistently across most stations in the domain. 441 

 442 

We note a few attributes of the source data and development of GHCN-D, LI2013, and NARR 443 

that are likely responsible for their disagreement. Although GHCN-D and LI2013 are developed 444 

from original observations of COOP stations, LI2013 uses far more stations (about 20,000) with 445 

less strict completeness criterion (at least 20 years of valid data) through the contiguous U.S. 446 

compared to our 176 GHCN-D stations in the Northeast fulfilling the 80% completeness 447 

threshold from 1915–2011 (Livneh et al. 2013; Menne et al. 2012a, b). Precipitation data in the 448 

LI2013 dataset is also linearly apportioned among days based on the time of observation to very 449 

fine spatial resolution (1/16°) and subsequently scaled on a monthly basis so as to match the 450 

long-term mean (Livneh et al. 2013), which the authors caution may make the data unsuitable for 451 

trend analysis (Livneh et al. 2015). However, we find that despite monthly scaling, LI2013 452 

trends closely match the GHCN-D trends in annual total precipitation. 453 

 454 

We note two relevant challenges with NARR. The first is that some discontinuities exist along 455 

the U.S.–Canada border (Luo et al. 2007; Milrad et al. 2012). These discontinuities can be 456 

attributed to characteristics of the two different national observational datasets, in particular the 457 

different spatial density of assimilated rain gauges, merged by NCEP, and the fact that no 458 
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smoothing was applied when these two datasets were merged (Mo et al. 2005; Luo et al. 2007; 459 

Milrad et al. 2012). To lessen the effects of this discontinuity in our analyses, we masked out a 460 

buffer of cells along the U.S.–Canada border. The second challenge is the sharp precipitation 461 

gradients along the coastline. Due to lack of station observations, the merged precipitation 462 

dataset from the Climate Prediction Center in NCEP is known to be increasingly less reliable 463 

over the oceans north of 42.5°N (Mesinger et al. 2006). Thus, NARR is meant to be primarily 464 

used over land and may be inaccurate over northern oceans (Mesinger et al. 2006; Bukovsky and 465 

Karoly 2007). This provides a likely explanation as to why NARR grids near coastlines, 466 

incorporating some information from ocean grid points, have lower precipitation relative to 467 

GHCN-D stations.  468 

 469 

3.2.2 Spatially averaged Northeast extreme precipitation 470 

LI2013 reproduces the regional average extreme precipitation, but LI2013 extreme precipitation 471 

trends differ from the GHCN-D trends (Table 6), contrary to the ability of LI2013 to capture 472 

annual total precipitation trends as noted above. Specifically, the trends in extreme precipitation 473 

during 1915–2011 and 1979–2011 in LI2013 are lower than GHCN-D, and unlike GHCN-D, 474 

they are not statistically significant, nor do they have a statistically significant changepoint. 475 

LI2013 reproduces well the GHCN-D spatial pattern of extreme precipitation amount (Figure 476 

7a), but the 1915–2011 LI2013 trends, both positive and negative, are substantially larger over 477 

many regions than the GHCN-D trends (Figure 7b). 478 

 479 
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Like annual total precipitation, NARR also tends to underestimate extreme precipitation (Table 480 

6). The 1979–2011 annual extreme precipitation in NARR (77.5 mm) is 9.9% lower than in 481 

GHCN-D (86 mm). While the NARR trend in 1979–2014 annual extreme precipitation (4.9 mm 482 

decade-1) is insignificant and much lower than the GHCN-D trend (12.6 mm decade-1), the 483 

NARR trend (15.8 mm decade-1) is similar to the GHCN-D trend (14.7 mm decade-1) if the 484 

analysis is restricted to 1979–2011. The differences mainly derive from anomalously low 485 

extreme precipitation in NARR for 2013–2014; approximately 45% lower than the 1979–2014 486 

average NARR extreme precipitation (77.5 mm). In contrast, the 2013–2014 extreme 487 

precipitation in GHCN-D is almost equal to its 1979–2014 average. In further contrast with the 488 

GHCN-D data, the NARR extreme precipitation time series has no significant changepoints. 489 

Spatially, Figure 7c shows a widespread underestimation of average extreme precipitation by 490 

NARR relative to GHCN-D from 1979–2014. NARR does capture GHCN-D trends in extreme 491 

precipitation from 1979–2014 in several regions, including central and western New York, 492 

western Maine, Delaware, western West Virginia, and southern New Jersey, but otherwise shows 493 

significant differences from GHCN-D spatial trends. These spatial differences are largest in New 494 

Hampshire, Massachusetts, Vermont, Connecticut and Rhode Island (Figure 7d). 495 

 496 

3.2.3 Seasonal precipitation 497 

Relative to GHCN-D, LI2013 slightly overestimates seasonal total precipitation while NARR 498 

underestimates seasonal total precipitation (Table 7). Low seasonal total precipitation values in 499 

NARR are consistent with the low annual total values in NARR noted in section 3.2.1. 500 

 501 



23 

 

LI2013 seasonal total precipitation trends are similar to GHCN-D trends, whereas trends in 502 

NARR are lower than those in GHCN-D. Of the five significant seasonal trends in GHCN-D, 503 

two occur during time periods that overlap with LI2013 (1915–2011 fall and 1979–2011 winter), 504 

and LI2013 is also significant for both. However, there are three significant trends in GHCN-D 505 

for time periods that NARR is available, and NARR matches with 1979–2011 winter only, 506 

although it still underestimates the value (15.9 mm decade-1 for NARR compared to 20.1 mm 507 

decade-1 for GHCN-D).  508 

 509 

For seasonal extreme precipitation (Table 8), once again LI2013 averages are very close to 510 

GHCN-D seasonal extreme precipitation averages, whereas NARR generally underestimates 511 

seasonal extreme precipitation, with the biggest differences in summer (15%) and smallest 512 

differences in winter (0.6%). The seasonal extreme precipitation trends of LI2013 are equal to or 513 

smaller than those from GHCN-D, however LI2013 fails to capture most significant seasonal 514 

trends in GHCN-D (except winter 1979–2011). NARR seasonal extreme precipitation trends are, 515 

similar to seasonal total precipitation trends, equal to or smaller than GHCN-D trends in most 516 

cases with the exceptions of spring and fall 1979–2011. Of the four significant positive trends in 517 

GHCN-D seasonal extreme precipitation that occur in time periods for which NARR data is 518 

available, NARR is significant for two of them, spring and winter 1979–2011. 519 

 520 

 521 

 522 

 523 
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4 Conclusions 524 

Over the 1901–2014 station observational record in the Northeast, we find a significant 6.8% 525 

(0.6% decade-1) increase in annual total precipitation and a much larger 41% (3.6% decade-1) 526 

increase in annual extreme precipitation. However, a key conclusion of our study is that the 527 

recent increases in annual total and extreme precipitation in the Northeast are best characterized 528 

as abrupt shifts in 2002 and 1996, respectively, rather than long-term increases over several 529 

decades as could be implied from a linear trend. While the pre-changepoint trends in annual total 530 

(1901–2001; -1.6 mm decade-1) and annual extreme (1901–1995; 0.1 mm decade-1) precipitation 531 

are not statistically significant, total precipitation from 2002–2014 was 13% higher than from 532 

1901–2001 and extreme precipitation from 1996–2014 was 53% higher than from 1901–1995, 533 

with both increases being statistically significant. The fact that these wetter periods both abut the 534 

end of our record in 2014 means that any long-term linear trends are highly dependent on their 535 

start date, and should therefore be interpreted with caution, particularly when extrapolating into 536 

the future. Of note, the recent 2015–2016 drought in the Northeast is not included in our 537 

analyses, although it is not likely to change the significance of the post-changepoint increases.  538 

 539 

Spatially, we find that the increases in annual total and extreme precipitation are widespread 540 

across the Northeast domain, with the exception of smaller increases and even some significant 541 

decreases to the east of Lake Erie, and in the southern part of the domain in West Virginia, 542 

Maryland, and Delaware. Our seasonal analysis reveals that fall and summer total precipitation 543 

have statistically significant increases after changepoints in 2002 and 2003, respectively, 544 

suggesting that they contribute to the annual total precipitation changepoint in 2002. The extreme 545 

precipitation increase across the 1996 changepoint is associated with 83% and 85% increases in 546 
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spring and fall extreme precipitation, respectively, and may indicate common atmospheric 547 

forcing of spring and fall extreme precipitation in the mid-late 1990’s. The increase in fall 548 

precipitation across the 1995 changepoint is consistent with Kunkel et al.’s (2010) finding that 549 

increased heavy precipitation associated with tropical cyclones after 1994 is an important driver 550 

of the overall increase in extreme precipitation. Our ongoing investigations into the underlying 551 

dynamical causes for Northeast annual total and extreme precipitation increases are focusing on 552 

these critical time periods in the late 1990s and early 2000s.  553 

 554 

Our comparison of spatial and temporal extreme precipitation patterns in station (GHCN-D), 555 

gridded (LI2013), and reanalysis (NARR) datasets shows that LI2013 is more consistent with 556 

station data than NARR. LI2013 reasonably captures the mean (within 2%) and seasonality 557 

(overestimates by 0–10%) of GHCN-D extreme precipitation, but contains significant 558 

differences in its trends. NARR underestimates regionally averaged extreme precipitation across 559 

all seasons by 0.6–15%, and the annual extreme trends show significant differences in their 560 

spatial distribution, particularly over New England. Perhaps more importantly, both the NARR 561 

and LI2013 annual extreme time series have no significant changepoints.  562 

 563 

LI2013 does, however, reproduce GHCN-D regionally averaged annual and seasonal total 564 

precipitation within 5% (and usually within 3%), and its trends faithfully capture those from 565 

station observations both across the region and averaged over the Northeast. In addition, LI2013 566 

has a changepoint in 2003, only one year later than the changepoint identified in GHCN-D 567 

annual total precipitation. However, NARR underestimates annual and seasonal total 568 

precipitation by 3–10%, and has annual total precipitation trends that are a factor of 2–9 times 569 
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smaller than GHCN-D trends. Spatially, NARR is also less accurate than LI2013, with 570 

decreasing 1979–2014 trends over much of the coastal and western portions of the domain where 571 

GHCN-D trends are positive. This comparison of LI2013 and NARR to GHCN-D provides 572 

important information on the strengths and limitations of these products for use in analyzing 573 

hydroclimate, forcing climate impacts models, and identifying drivers of total and extreme 574 

precipitation. 575 

 576 
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 696 

Tables 697 

Table 1: Means and trends of GHCN-D annual total precipitation. The trends are calculated from simple linear 698 

regression. The symbols, * and #, denote the trend is significant at 0.05 level using parametric method (t-test) and 699 

nonparametric method (Mann-Kendall test), respectively. Percentage trends are calculated by dividing the linearly 700 

modeled change per decade by the value of the start year. 701 

 Units 1901–2014 1915–2011 1979–2014 1979–2011 

Mean  mm yr-1 1063 1059 1104 1104 

Trend mm decade-1 6.0* 11.1* 40.8*# 52.8*# 

Trend % decade-1 0.6 1.1 4.0 5.2 

 702 
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Table 2: Means and trends of annual extreme precipitation in GHCN-D dataset. The trends are calculated from 703 

Theil-Sen robust linear regression. A # denotes the trend is significant at 0.05 level using Mann-Kendall test. 704 

Percentage trends are calculated by dividing the linearly modeled change per decade by the value of the start year. 705 

 Units 1901–2014 1915–2011 1979–2014 1979–2011 

Mean mm yr-1 82.4 83.0 97.4 97.3 

Trend mm decade-1 2.4# 3.1# 13.9# 19.7# 

Trend % decade-1 3.6 4.6 19.2 30.3 

 706 
 707 

 708 

 709 
Table 3: Means and trends of GHCN-D seasonal total precipitation. The trends are calculated from simple linear 710 

regression. The symbols, * and #, denote the trend is significant at 0.05 level using parametric method (t-test) and 711 

nonparametric method (Mann-Kendall test), respectively. Percentage trends are calculated by dividing the linearly 712 

modeled change per decade by the value of the start year. 713 

 Units 1901–2014 1915–2011 1979–2014 1979–2011 

Spring      

Mean mm yr-1 267.3 265.7 278.1 279.6 

Trend mm decade-1 0.9 3.0 4.4 8.6 

Trend % decade-1 0.4 1.2 1.6 3.2 

Summer      

Mean mm yr-1 302.4 299.7 313.0 309.4 

Trend mm decade-1 0.9 1.6 18.3*# 16.6 

Trend % decade-1 0.3 0.5 6.5 5.9 

Fall      

Mean mm yr-1 262.3 265.4 285.2 287.9 

Trend mm decade-1 4.8*# 6.0*# 6.8 14.5 

Trend % decade-1 2.1 2.5 2.5 5.5 

Winter      

Mean mm yr-1 233.9 229.0 226.0 225.0 

Trend mm decade-1 -1.8 0.6 18.1*# 21.8*# 

Trend % decade-1 -0.7 0.3 9.3 11.5 

 714 

Table 4: Means and trends of GHCN-D seasonal extreme precipitation. The trends are calculated from Theil-Sen 715 

robust linear regression. A # denotes the trend is significant at 0.05 level using Mann-Kendall test. Percentage trends 716 

are calculated by dividing the linearly modeled change per decade by the value of the start year. 717 

 Units 1901–2014 1915–2011 1979–2014 1979–2011 
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Spring      

Mean mm yr-1 18.1 17.7 25.1 24.6 

Trend mm decade-1 0.8# 1.2# 4.1 4.4 

Trend % decade-1 6.4 10.2 23.2 25.0 

Summer      

Mean mm yr-1 22.9 23.0 25.0 24.8 

Trend mm decade-1 0.2 0.1 2.5 2.4 

Trend % decade-1 0.9 0.6 12.4 11.8 

Fall      

Mean mm yr-1 21 21.8 26.7 27.1 

Trend mm decade-1 0.6 0.8 3.5 5.3 

Trend % decade-1 3.4 4.8 17.1 28.8 

Winter      

Mean mm yr-1 15.1 15.0 17.3 17.4  

Trend mm decade-1 0.5# 0.9# 3.8# 5.3# 

Trend % decade-1 4.3 8.3 35.3 57.5 

 718 

Table 5: Means and trends of GHCN-D, LI2013, and NARR annual total precipitation. An x denotes a combination 719 

of time period and dataset that is not available. The trends are calculated from simple linear regression. The 720 

symbols, * and #, denote the trend is significant at 0.05 level using parametric method (t-test) and nonparametric 721 

method (Mann-Kendall test), respectively. 722 

 Units 1901–2014 1915–2011 1979–2014 1979–2011 

Mean      

GHCN-D mm yr-1 1063 1071 1111 1110 

LI2013 mm yr-1 x 1088 x 1143 

NARR mm yr-1 x x 1041 1052 

Trend      

GHCN-D mm decade-1 6.0* 10.7* 46.4*# 56.8*# 

LI2013 mm decade-1 x 12.4*# x 54.2*# 

NARR mm decade-1 x x 5.4 25.9 

 723 

Table 6: Means and trends of GHCN-D, LI2013, and NARR annual extreme precipitation. An x denotes a 724 

combination of time period and dataset that is not available. The trends are calculated from Theil-Sen robust linear 725 

regression. A # denotes the trend is significant at 0.05 level using Mann-Kendall test.  726 

 Units 1901–2014 1915–2011 1979–2014 1979–2011 

Mean      

GHCN-D mm yr-1 82.4 82.3 86.0 85.6 

LI2013 mm yr-1 x 83.9 x 85.1 

NARR mm yr-1 x x 77.5 77.9 

Trend      

GHCN-D mm decade-1 2.4# 2.3# 12.6# 14.7# 

LI2013 mm decade-1 x 1.3 x 12 

NARR mm decade-1 x x 4.9 15.8# 
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 734 
Table 7: Means and trends of GHCN-D, LI2013, and NARR seasonal total precipitation. An x denotes a 735 

combination of time period and dataset that is not available. The trends are calculated from simple linear regression. 736 

The symbols, * and #, denote the trend is significant at 0.05 level using parametric method (t-test) and 737 

nonparametric method (Mann-Kendall test), respectively. 738 

 Units 1901–2014 1915–2011 1979–2014 1979–2011 

Spring Mean      

GHCN-D mm yr-1 267.3 262.7 282.4 283.6 

LI2013 mm yr-1 x 273 x 290.5 

NARR mm yr-1 x x 272.8 277.3 

Spring Trend      

GHCN-D mm decade-1 0.9 2.6 7.0 11.1 

LI2013 mm decade-1 x 3.6* x 9.2 

NARR mm decade-1 x x 4.1 -2.8 

Summer Mean      

GHCN-D mm yr-1 302.4 299.6 309.8 307.1 

LI2013 mm yr-1 x 302.5 x 315 

NARR mm yr-1 x x 279.5 281.2 

Summer Trend      

GHCN-D mm decade-1 0.9 1.8 17.0*# 16.3 

LI2013 mm decade-1 x 2.1 x 16 

NARR mm decade-1 x x 2.9 7.4 

Fall Mean      

GHCN-D mm yr-1 262.3 268.3 285.2 286.9 

LI2013 mm yr-1 x 272.6 x 296.8 

NARR mm yr-1 x x 261.5 265.2 

Fall Trend      

GHCN-D mm decade-1 4.8*# 5.9*# 9.9 16.4 

LI2013 mm decade-1 x 5.9*# x 15.5 

NARR mm decade-1 x x -1 5.7 

Winter Mean      

GHCN-D mm yr-1 233.9 228.6 231.5 230.1 

LI2013 mm yr-1 x 239.2 x 236.5 

NARR mm yr-1 x x 223.4 223.1 

Winter Trend      
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GHCN-D mm decade-1 -1.8 0.1 17.7*# 20.1*# 

LI2013 mm decade-1 x 1.2 x 20.3*# 

NARR mm decade-1 x x 11.5 15.9*# 

 739 

 740 

 741 

 742 

 743 
Table 8: Means and trends of GHCN-D, LI2013, and NARR seasonal extreme precipitation. An x denotes a 744 

combination of time period and dataset that is not available. The trends are calculated from Theil-Sen robust linear 745 

regression. A # denotes the trend is significant at 0.05 level using Mann-Kendall test. 746 

 Units 1901–2014 1915–2011 1979–2014 1979–2011 

Spring Mean      

GHCN-D mm yr-1 18.1 17.1 19.2 19.0 

LI2013 mm yr-1 x 18.7 x 19.1 

NARR mm yr-1 x x 18.4 18.6 

Spring Trend      

GHCN-D mm decade-1 0.9# 0.8# 3.8# 3.7# 

LI2013 mm decade-1 x 0.6 x 2.5 

NARR mm decade-1 x x 2.6 4.7# 

Summer Mean      

GHCN-D mm yr-1 22.9 22.5 23.3 23.0 

LI2013 mm yr-1 x 23.5 x 22.9 

NARR mm yr-1 x x 19.7 19.6 

Summer Trend      

GHCN-D mm decade-1 0.2 0.2 2.9# 2.8 

LI2013 mm decade-1 x -0.1 x 1.8 

NARR mm decade-1 x x 2.2 2.7 

Fall Mean      

GHCN-D mm yr-1 21 21.6 22.7 22.7 

LI2013 mm yr-1 x 22.2 x 22.9 

NARR mm yr-1 x x 20.0 20.2 

Fall Trend      

GHCN-D mm decade-1 0.6 0.6 3.3 4.8 

LI2013 mm decade-1 x 0.2 x 4.8 

NARR mm decade-1 x x 1.7 5.0 

Winter Mean      

GHCN-D mm yr-1 15.1 15.1 16.1 16.1 

LI2013 mm yr-1 x 16.7 x 16.1 

NARR mm yr-1 x x 16.0 16.0 

Winter Trend      

GHCN-D mm decade-1 0.5# 0.8# 3.2 4.4# 

LI2013 mm decade-1 x 0.3 x 4.0# 

NARR mm decade-1 x x 2.4 4.4# 

 747 



34 

 

 748 
Figure Caption List 749 

Figure 1: Time series of spatially averaged Northeast GHCN-D annual total precipitation from 750 

1901–2014 with (a) nine trendlines for time periods starting in 1901, 1911, 1921, 1931, 751 

1941, 1951, 1961, 1971, and 1981, and ending in 2014; and (b) dashed line denoting 1901–752 

2014 average annual total precipitation and trendlines before and after the changepoint year 753 

of 2002. .................................................................................................................................. 35 754 

Figure 2: GHCN-D annual total precipitation (a) means 1901–2014, (b) trends 1901–2014, (c) 755 

trends 1915–2011, and (d) trends 1979–2014. In (b)–(d), square points represent significant 756 

trends while diamond points represent insignificant trends. ................................................. 36 757 

Figure 3: Time series of spatially averaged Northeast GHCN-D annual extreme precipitation 758 

from 1901–2014 with (a) nine trendlines for time periods starting in 1901, 1911, 1921, 1931, 759 

1941, 1951, 1961, 1971, and 1981, and ending in 2014; and (b) dashed line denoting 1901–760 

2014 average annual extreme precipitation and trendlines before and after the changepoint 761 

year of 1996. .......................................................................................................................... 37 762 

Figure 4: GHCN-D annual extreme precipitation (a) means 1901–2014, (b) trends 1901–2014, 763 

(c) trends 1915–2011, and (d) trends 1979–2014. In (b)–(d), square points represent 764 

significant trends, diamond points represent insignificant trends, and white points represent 765 

undetectable trends or trends with zero slope. ....................................................................... 38 766 

Figure 5: Percentage change in annual extreme precipitation between the periods 1996–2014 and 767 

1901–1995 relative to 1901–1995. ........................................................................................ 39 768 

Figure 6: LI2013 (shading) and GHCN-D (points) annual total precipitation (a) means and (b) 769 

trends 1915–2011. NARR (shading) and GHCN-D (points) annual total precipitation (c) 770 

means and (d) trends 1979–2014. In (b) and (d), square points represent significant trends 771 

while diamond points represent insignificant trends. ............................................................ 40 772 

Figure 7: LI2013 (shading) and GHCN-D (points) annual extreme precipitation (a) means and 773 

(b) trends 1915–2011. NARR (shading) and GHCN-D (points) annual extreme precipitation 774 

(c) means and (d) trends 1979–2014. In (b) and (d), square points represent significant 775 

trends, diamond points represent insignificant trends, and white points represent 776 

undetectable trends or trends with zero slope. ....................................................................... 41 777 

 778 
 779 
 780 
 781 
 782 
 783 



35 

 

 784 
Figure 1: Time series of spatially averaged Northeast GHCN-D annual total precipitation from 1901–2014 with (a) 785 

nine trendlines for time periods starting in 1901, 1911, 1921, 1931, 1941, 1951, 1961, 1971, and 1981, and ending in 786 

2014; and (b) dashed line denoting 1901–2014 average annual total precipitation and trendlines before and after the 787 

changepoint year of 2002. 788 

 789 
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 790 
Figure 2: GHCN-D annual total precipitation (a) means 1901–2014, (b) trends 1901–2014, (c) trends 1915–2011, 791 

and (d) trends 1979–2014. In (b)–(d), square points represent significant trends while diamond points represent 792 

insignificant trends. 793 
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 794 
Figure 3: Time series of spatially averaged Northeast GHCN-D annual extreme precipitation from 1901–2014 with 795 

(a) nine trendlines for time periods starting in 1901, 1911, 1921, 1931, 1941, 1951, 1961, 1971, and 1981, and 796 

ending in 2014; and (b) dashed line denoting 1901–2014 average annual extreme precipitation and trendlines before 797 

and after the changepoint year of 1996. 798 

 799 
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 800 
 801 

Figure 4: GHCN-D annual extreme precipitation (a) means 1901–2014, (b) trends 1901–2014, (c) trends 1915–2011, 802 

and (d) trends 1979–2014. In (b)–(d), square points represent significant trends, diamond points represent 803 

insignificant trends, and white points represent undetectable trends or trends with zero slope.  804 
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Figure 5: Percentage change in annual extreme precipitation between the periods 1996–2014 and 1901–1995 relative 808 

to 1901–1995. 809 
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 824 
 825 

Figure 6: LI2013 (shading) and GHCN-D (points) annual total precipitation (a) means and (b) trends 1915–2011. 826 

NARR (shading) and GHCN-D (points) annual total precipitation (c) means and (d) trends 1979–2014. In (b) and 827 

(d), square points represent significant trends while diamond points represent insignificant trends. 828 
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 835 
 836 

Figure 7: LI2013 (shading) and GHCN-D (points) annual extreme precipitation (a) means and (b) trends 1915–2011. 837 

NARR (shading) and GHCN-D (points) annual extreme precipitation (c) means and (d) trends 1979–2014. In (b) 838 

and (d), square points represent significant trends, diamond points represent insignificant trends, and white points 839 

represent undetectable trends or trends with zero slope. 840 
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